LAB 3 : PREPARATION AND STERILIZATION OF CULTURE MEDIA by Nurul Samihah binti Mohd Jamil (111408)

Introduction:


A growth medium or culture medium is a liquid or gel designed to support the growth of microorganisms or cells, or small plants like the moss Physcomitrella patens. There are different types of media for growing different types of cells.
An agar plate
There are two major types of growth media: those used for cell culture, which use specific cell types derived from plants or animals, and microbiological culture, which are used for growing microorganisms, such as bacteria or yeast. The most common growth media for microorganisms are nutrient broths and agar plates; specialized media are sometimes required for microorganism and cell culture growth. Some organisms, termed fastidious organisms, require specialized environments due to complex nutritional requirements. Viruses, for example, are obligate intracellular parasites and require a growth medium containing living cells.

Objectives: 
  • To prepare sterile nutrient agar for culturing microorganisms.
 Discussion:

To prepare agar; weigh 7.00 g of nutrient powder by using analytical balance and put in the scott bottle. Measure 250 ml of distilled water by measuring cylinder and add up in the scott bottle containing nutrient powder. Then, mixed up nutrient media with distilled water. Recap the bottles loosely and set aside for the sterilization. Repeat the  steps for 10.45g in 100 ml MRS broth and 5.00 g in 250 ml peptone 2%. After that, sterilize  all media at 121˚C for 15 minutes by using autoclave.



A widely-used method for heat sterilization is the autoclave, sometimes called a converter. Autoclaves commonly use steam heated to 121–134 °C (250–273 °F). To achieve sterility, a holding time of at least 15 minutes at 121 °C (250 °F) or 3 minutes at 134 °C (273 °F) is required. Additional sterilizing time is usually required for liquids and instruments packed in layers of cloth, as they may take longer to reach the required temperature (unnecessary in machines that grind the contents prior to sterilization). Following sterilization, liquids in a pressurized autoclave must be cooled slowly to avoid boiling over when the pressure is released. Modern converters operate around this problem by gradually depressing the sterilization chamber and allowing liquids to evaporate under a negative pressure, while cooling the contents. Proper autoclave treatment will inactivate all fungi, bacteria, viruses and also bacterial spores, which can be quite resistant. It will not necessarily eliminate all prions.


Autoclaves are widely used in microbiology, medicine, tattooing, body piercing, veterinary science, mycology, dentistry, chiropody and prosthetics fabrication. They vary in size and function depending on the media to be sterilized.
Typical loads include laboratory glassware, surgical instruments, medical waste, patient pair utensils, animal cage bedding, and lysogeny broth.
A notable growing application of autoclaves is the pre-disposal treatment and sterilization of waste material, such as pathogenic hospital waste. Machines in this category largely operate under the same principles as conventional autoclaves in that they are able to neutralize potentially infectious agents by utilizing pressurized steam and superheated water. A new generation of waste converters is capable of achieving the same effect without a pressure vessel to sterilize culture media, rubber material, gowns, dressing, gloves, etc. It is particularly useful for materials which cannot withstand the higher temperature of a hot air oven. For all-glass syringes, sterilizing in a hot air oven is a better method.
Autoclaves are also widely used to cure composites and in the vulcanization of rubber. The high heat and pressure that autoclaves allow help to ensure that the best possible physical properties are repeatably attainable. The aerospace industry and sparmakers (for sailboats in particular) have autoclaves well over 50 feet long, some over 10 feet wide.

Conclusion:
 
This report was identified the correct way to prepare a culture media. The type of culture media was used nutrient agar which prepare suitable medium for microorganisms growth. To culture the microorganisms in the nutrient agar, few steps of sterilization was taken to avoid any contamination on the colony. Autoclaving is the process used to sterilize the nutrient agar. The media was inserted into an autoclave which is a large pressure cooker. The chamber provided high temperature and pressurized steam
References: 

No comments:

ZASS's Guests

Bioprocess Technology ? ? ?

Bioprocess technology is the industrial application of biological processes involving living cells or their components to effect desired transformation of substrates. The major advantages of bioprocesses . . .

I'm interested to . . .

ZASS Technologists Bhd.

WELCOME to ZASS Technologists Bhd.

Bioprocess Technologist 1

Bioprocess Technologist 1
Zayani bt Mukhtar

Bioprocess Technologist 2

Bioprocess Technologist 2
Nur Diana bt Abdul Jalil

Bioprocess Technologist 3

Bioprocess Technologist 3
Nor Shaqira bt Azlan

Bioprocess Technologist 4

Bioprocess Technologist 4
Nurul Samihah binti Mohd Jamil

Interesting ? Let join us now !

Powered by Blogger.